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2013 AFOSR SPRING REVIEW 

NAME: Douglas Smith          

               

BRIEF DESCRIPTION OF PORTFOLIO: 

Foundational research examining aerodynamic interactions of 

laminar/transitional/turbulent flows with structures, rigid or flexible, 

stationary or moving. 

Fundamental understanding is used to develop integrated control 

approaches to intelligently modify the flow interaction to some advantage. 

 

LIST SUB-AREAS IN PORTFOLIO: 

Flow Physics for Control 

Flow Control Effectors 

Low Reynolds Number Unsteady Aerodynamics 

Aeromechanics for MAVs 
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Study of Physics-based Control of Jets in Crossflow 
K. Mahesh, Minnesota & A. Karagozian, UCLA 

 Experiment Simulation 

Spectra inside nozzle shows similar  behavior 
to spectra along upstream shear layer 

Controlled transverse jet mixing requires understanding 

fundamental instabilities and their response to jet excitation 

 
• Is it possible to simulate/predict the 

instability behaviors for different jet 

velocities? 

• What is the fundamental 

mechanism for the transition 

between behaviors? 
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Newtonian 

Re=3600 

• Red: constant vortex 

strength Q. 

• Green: constant vx. 

Viscoelastic 

Wi = 80, b=0.97, Ex=103 

57% DR 

Exploiting the nonlinear dynamics of near-wall 

turbulence for skin-friction reduction 
M. Graham, Wisconsin 
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(BRI) Wall Turbulence With Designer Properties:  

Manipulation of Energy Pathways 
McKeon & Tropp, Caltech & Goldstein, UT-Austin & Sheplak, Florida 

PROGRADE 

HAIRPINS 

RETROGRADE 

HAIRPINS 

Wu & Moin, J. Fluid Mech. 2008 
Adrian, Meinhart & Tomkins, J. Fluid Mech. 2000 

Decreasing complexity 
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Navier-Stokes 
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Biological Inspiration \.J ••• • 
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Biological Inspiration 

From Nature – Attenborough’s Life Stories – Life on Camera 
Courtesy of WETA 

\.J ••• • 
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Micro Air Vehicle Unsteady Aerodynamics 
M. OL, AFRL/RQ 

At Re = 10000, lift an drag histories are 
mutually similar, and net aero force is wall-
normal.  At Re = 60, viscous effects tilt the 
net aero force aft, far more so for translation 
than for rotation.  This might explain 
benefits of insect-type flapping at very low 
Re 

Case-study: rotation vs. translation impulsive-start 

Rotating AR=2 plate vs. Translating AR=4 plate 
Acceleration is linear ramp over 1 chord 
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Case-study: Re effects on hovering plate 

Hovering plate at 45° incidence , 
rectilinear motion: LEV and TEV 
production at semi-stroke 
extremum, but no vortex stability.  
Vortices at Re = 10,000 almost 
indistinguishable from Re = 300 

Re 10,000 

Re 300 (Courtesy M. Ringuette) 

Role of Leading 

Edge Vortex 
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Flapping-Wing Vortex Formation and Scaling 
M. Ringuette (YIP 2010), Buffalo 

For both ARs, stable LEV over inboard ~50-60% span 

AR-effects: 

 outboard LEV detaches for AR = 4 

 AR = 2 stays close to plate 

60% span 

50% span 

AR = 2 

Top view 

s/c = chords 

traveled by tip, 

ϕ = rotation 

angle 

AR = 4 Stable 

LEV 

Detached 

LEV 

LEV 

breakdown 

CL rise after initial 

peak due to 

continual 

evolution of 

overall vortex 

flow. 

AR=4 breakdown 

affects CL growth. 
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Flow Structure and Loading on  

Revolving-Pitching Wings 
D. Rockwell, Lehigh 

Leading-Edge  

Vortex 

Downwash v 

αeff = 60° 

   DOWNWASH IN RELATION TO LEADING EDGE VORTEX 

Iso - Q 

Root  

Vortex Tip 

Vortex 

Leading-Edge Vortex 

Trailing-Edge Vortex 

αeff = 60° 

VORTEX SYSTEM ON  ROTATING WING 
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UMD/Daedalus (ARL/MAST) 

High-Resolution Computational Studies and Low-Order 

Modeling of Agile Micro Air Vehicle Aerodynamics 
J. Eldredge, UCLA 

AeroVironment  
‘Nano Hummingbird’ 

Linear Quasi-Steady 
Wingbeat-ave’d 

Flight Ctrl 

Reduced 
Maneuverability 

Develop low-order models that can capture the critical phenomena 
for agile maneuvering with flapping wings. 

Improvement 
via model 
optimization 

Experimental flow viz 
(Granlund et al., AFRL) 

High-fidelity results 

Low-order model 
streamlines 
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Control of Low Reynolds Number Flows with Fluid-

Structure Interactions    
I Gursul, Bath 

 Conventional flow control techniques are not practical 

for MAVs (weight limitation, insufficient space for  

actuators) 

 Attempt to  exploit  aeroelastic vibrations of flexible 

wings   

 Excite the fluid instabilities with structure 

Wing deformation measurements 

Time-averaged lift measurements 

=15 post-stall 

Sr=1.5 resonance frequency 

CLflexible/CLrigid  2 

 

 

Tip amplitude and phase are 

important  
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Understanding the Flow Physics of Energy Extraction  

from Gusting Flows to Enhance MAV Performance    
D. Williams, IIT & T. Colonius, Caltech 

U(t) is at the same peak 
value for both images, but 
lift is different 
 
LEV structure controls L’ 
 
Deeper insight obtained 
from numerical simulations 
shown in next slide 

 

k = 1.0  Min Lift 

k = 0.5 Max Lift 

Lift fluctuations for different Reynolds numbers 
Instantaneous flow structure (vorticity) on flat-plate airfoil @ Re=500  
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(max quasi-static lift) 

at minimum U  

(min quasi-static lift) 
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minimum U∞ 
suppresses 
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maximum U∞ 
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quasi-static 
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o 
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Simulation 
Re=100 
Re=200 
Re=300 
Re=400 
Re=500 
Experiment  
Re=57000  

Max 
fluct. 

Min 
fluct. 
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3D physics-based morphology 
analysis of flexible flapping wings  
 
 
 
 
 
 
 
 
Wing gaits analysis using SVD 
(Singular Value Decomposition) 
 

Physics-based morphology analysis and adjoint 

optimization of flexible flapping wings    
H. Dong, UVa & M. Wei, NMSU 

Mode1(Flapping) Mode3(Twisting) Mode2(Vibrating) 
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Time-Dependent Fluid-Structure Interaction & Passive  

Flow Control of Low Reynolds Number Membrane Wings 
P. Hubner, A. Lang, Alabama & L. Ukeiley, P. Ifju, Florida 
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Aerodynamics and Mechanics of Robust Flight in Bats 
S. Swartz & K. Breuer, Brown 

• Social animals are known to fly (birds & bats) or swim (fish) 
in large groups with diverse geometric arrangements 

• May be fluid dynamic and energetic advantages depending 
on the circumstances 

• For bats, little is known of the group flight dynamics 

Flying bats generate wakes that may be sensed by other individuals to control spacing, reduce flight 
cost, and increase aerodynamic force production.  

leading bat 

trailing bat 

Cynopterus brachyotis, the lesser dog-faced fruit bat, and 
the robotic flapping wing based on its anatomy and flight 
behavior. 

Flight power with and without wing folding, with respect to main flapping 
axis[(a), left] and front-back axis [(b), right]. Plots are mean and 95% CI for 
160 wingbeats at 8 Hz and 60° stroke plane; grey shading is downstroke. 
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Biological Inspiration 

Courtesy of Breuer & Swartz, Brown 

\.J ••• • 
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An Integrated Study of Flight Stabilization with  

Flapping Wings in Canonical Urban Flows 
R. Mittal, JHU & Hedrick, UNC 

Active stabilization of Hawkmoth in vortex 
perturbation 

Open-loop flight instability in hovering Hawkmoth 

• Stabilization of flapping wing vehicles 
in complex flows is critical for effective 
operation of these vehicles. 

• Study of flight stabilization in  insects 
could lead to new insights for 
designing small, agile flying vehicles 
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